Properties

Label 6.6.820125.1-19.1-a1
Base field 6.6.820125.1
Conductor norm \( 19 \)
CM no
Base change no
Q-curve no
Torsion order \( 3 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field 6.6.820125.1

Generator \(a\), with minimal polynomial \( x^{6} - 9 x^{4} - 4 x^{3} + 9 x^{2} + 3 x - 1 \); class number \(1\).

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 3, 9, -4, -9, 0, 1]))
 
Copy content gp:K = nfinit(Polrev([-1, 3, 9, -4, -9, 0, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 3, 9, -4, -9, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(\frac{16}{19}a^{5}+\frac{2}{19}a^{4}-\frac{139}{19}a^{3}-\frac{79}{19}a^{2}+\frac{127}{19}a+\frac{33}{19}\right){x}{y}+\left(\frac{27}{19}a^{5}+\frac{1}{19}a^{4}-\frac{231}{19}a^{3}-\frac{125}{19}a^{2}+\frac{187}{19}a+\frac{64}{19}\right){y}={x}^{3}+\left(\frac{17}{19}a^{5}-\frac{5}{19}a^{4}-\frac{156}{19}a^{3}-\frac{21}{19}a^{2}+\frac{167}{19}a+\frac{3}{19}\right){x}^{2}+\left(\frac{168}{19}a^{5}-\frac{188}{19}a^{4}-\frac{1317}{19}a^{3}+\frac{795}{19}a^{2}+\frac{735}{19}a-\frac{290}{19}\right){x}-\frac{303}{19}a^{5}+\frac{88}{19}a^{4}+\frac{2757}{19}a^{3}+\frac{305}{19}a^{2}-\frac{3171}{19}a+\frac{521}{19}\)
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([33/19,127/19,-79/19,-139/19,2/19,16/19]),K([3/19,167/19,-21/19,-156/19,-5/19,17/19]),K([64/19,187/19,-125/19,-231/19,1/19,27/19]),K([-290/19,735/19,795/19,-1317/19,-188/19,168/19]),K([521/19,-3171/19,305/19,2757/19,88/19,-303/19])])
 
Copy content gp:E = ellinit([Polrev([33/19,127/19,-79/19,-139/19,2/19,16/19]),Polrev([3/19,167/19,-21/19,-156/19,-5/19,17/19]),Polrev([64/19,187/19,-125/19,-231/19,1/19,27/19]),Polrev([-290/19,735/19,795/19,-1317/19,-188/19,168/19]),Polrev([521/19,-3171/19,305/19,2757/19,88/19,-303/19])], K);
 
Copy content magma:E := EllipticCurve([K![33/19,127/19,-79/19,-139/19,2/19,16/19],K![3/19,167/19,-21/19,-156/19,-5/19,17/19],K![64/19,187/19,-125/19,-231/19,1/19,27/19],K![-290/19,735/19,795/19,-1317/19,-188/19,168/19],K![521/19,-3171/19,305/19,2757/19,88/19,-303/19]]);
 

This is a global minimal model.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z \oplus \Z/{3}\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(\frac{177}{19} a^{5} - \frac{232}{19} a^{4} - \frac{1318}{19} a^{3} + \frac{1051}{19} a^{2} + \frac{430}{19} a - \frac{180}{19} : -\frac{1931}{19} a^{5} + \frac{2269}{19} a^{4} + \frac{14739}{19} a^{3} - \frac{9626}{19} a^{2} - \frac{6256}{19} a + \frac{1709}{19} : 1\right)$$0.011032955638540121004931146789541747477$$\infty$
$\left(\frac{2}{57} a^{5} - \frac{14}{57} a^{4} + \frac{4}{57} a^{3} + \frac{26}{19} a^{2} - \frac{24}{19} a - \frac{1}{19} : \frac{173}{57} a^{5} - \frac{185}{57} a^{4} - \frac{461}{19} a^{3} + \frac{781}{57} a^{2} + \frac{318}{19} a - \frac{115}{19} : 1\right)$$0$$3$

Invariants

Conductor: $\frak{N}$ = \((-20/19a^5+7/19a^4+169/19a^3+18/19a^2-116/19a+11/19)\) = \((-20/19a^5+7/19a^4+169/19a^3+18/19a^2-116/19a+11/19)\)
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 19 \) = \(19\)
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(K, ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: $\Delta$ = $-6/19a^5+4/19a^4+64/19a^3-25/19a^2-69/19a-48/19$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((-6/19a^5+4/19a^4+64/19a^3-25/19a^2-69/19a-48/19)\) = \((-20/19a^5+7/19a^4+169/19a^3+18/19a^2-116/19a+11/19)^{3}\)
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( -6859 \) = \(-19^{3}\)
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
j-invariant: $j$ = \( -\frac{38489878116}{6859} a^{5} - \frac{8133128325}{6859} a^{4} + \frac{344847564441}{6859} a^{3} + \frac{226851839055}{6859} a^{2} - \frac{299489451885}{6859} a - \frac{180082842453}{6859} \)
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 1 \)
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: $r$ = \(1\)
Regulator: $\mathrm{Reg}(E/K)$ \( 0.011032955638540121004931146789541747477 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ \( 0.06619773383124072602958688073725048486200 \)
Global period: $\Omega(E/K)$ \( 105782.05314360112768937513853994427453 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 3 \)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(3\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 2.57747 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$$\begin{aligned}2.577470000 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 105782.053144 \cdot 0.066198 \cdot 3 } { {3^2 \cdot 905.607531} } \\ & \approx 2.577471277 \end{aligned}$$

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is semistable. There is only one prime $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((-20/19a^5+7/19a^4+169/19a^3+18/19a^2-116/19a+11/19)\) \(19\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 19.1-a consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.